Incipient fault detection in induction machine stator-winding using a fuzzy-Bayesian change point detection approach

نویسندگان

  • Marcos F. S. V. D'Angelo
  • Reinaldo M. Palhares
  • Ricardo H. C. Takahashi
  • Rosangela Helena Loschi
  • Lane Maria Rabelo Baccarini
  • Walmir M. Caminhas
چکیده

In this paper the incipient fault detection problem in induction machine stator-winding is considered. The problem is solved using a new technique of change point detection in time series, based on a two-step formulation. The first step consists of a fuzzy clustering to transform the initial data, with arbitrary distribution, into a new one that can be approximated by a beta distribution. The fuzzy cluster centers are determined by using a Kohonen neural network. The second step consists in using the Metropolis–Hastings algorithm for performing the change point detection in the transformed time series generated by the first step with that known distribution. The incipient faults are detected as long as they characterize change points in such transformed time series. The main contribution of the proposed approach is the enhanced resilience of thenew failure detectionprocedure against false alarms, combined with a good sensitivity that allows the detection of rather small fault signals. Simulation and practical results are presented to illustrate the proposed methodology. © 2009 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter

This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...

متن کامل

Fault detection in dynamic systems by a Fuzzy/Bayesian network formulation

In this paper the fault detection problem is solved using an alternative methodology based on a fuzzy/Bayesian strategy combining a Bayesian network and the fuzzy set theory. The new important issue in this proposed methodology is to address uncertainties in the input of the Bayesian Network. This contribution is possible since the fuzzy set theory is used as the knowledge representation. To il...

متن کامل

Design of an Active Approach for Detection, Estimation and Short-Circuit Stator Fault Tolerant Control in Induction Motors

Three phase induction motors have many applications in industries. Consequently, detecting and estimating the fault and compensate it in a way that the faulty induction motor satisfies the predefined goals are important issues. One of the most common faults in induction motors is the short circuit of the stator winding. In this paper, an active fault-tolerant control system is designed and pres...

متن کامل

Inter-turn Fault Analysis of Synchronous Generator using Finite Element Method (FEM)

A turn fault in the stator winding of a generator causes a large circulating current to flow in the shorted turns. If left undetected, turn faults can propagate, leading to phaseground or phase-phase faults. Incipient detection of turn’s faults is essential to avoid hazardous operating conditions and reduce down time. At present the synchronous generators are protected against almost all kind o...

متن کامل

Optimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network

This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011